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Abstract
String theory provides strong evidence that quantum gravity with certain
asymptopia is described by a conventional—nongravitational—gauge theory
living on the boundary. In this short summary of the plenary lecture we will
introduce this correspondence together with a summary of recent progress in
the construction of the quantum gravity description of nonlocal operators in
gauge theory such as Wilson loop operators.

PACS numbers: 04.60.Cf, 11.25.Tq

1. Introduction

String theory originated in the 1960s from an attempt to understand the strong interactions. In
that period, hadronic particles with ever increasing spin were produced in particle accelerators.
This proliferation of hadronic states led the theorist of the time to suspect that not all these
particles could be fundamental, as at the time there was no known consistent theory of
fundamental particles of high spin, a problem that still persists to this day.

A deceivingly simple and beautiful idea was put forward to address this embarrassment
of riches. The idea was to think of the various hadronic particles of mass m and spin s as
different oscillatory modes of an extended one-dimensional object, a fundamental string. In
particular, the mesons were interpreted as excitations of an open string.

This simple model led to some phenomenological successes. It explained in an elegant
way the experimentally observed ‘Regge trajectories’, where the maximal spin smax of a hadron
as a function of the mass m of the hadron fitted a linear trajectory

m2 � smax

α′ + const, (1.1)

where α′ is the so-called Regge slope, which phenomenologically α′ � (GeV)−2. In the
string model, the phenomenological formula (1.1) follows immediately from the kinematics
of rotating strings. The tension of the string T is inversely proportional to the Regge slope α′.
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Better experimental data together with improved theoretical understanding of the
consequences of string theory posed a serious challenge for string theory as the theory
of the strong interactions. The correct theory—quantum chromodynamics—was proposed
shortly after and immediately superseded string theory as the correct theory of the hadronic
world. Better data at higher energies demonstrated that string theory exhibited a much softer
behavior than that seen at colliders. QCD, on the other hand, spectacularly accounted for this
high-energy regime.

On the theoretical side a deeper understanding of the consistency conditions also led to
serious discrepancies with the hadronic world. Unitarity of the S-matrix predicted that string
theory made sense only in higher dimensions, above four spacetime dimensions. Also string
theory predicted the presence of a massless spin two particle, which is not present in the
hadronic world.

So the frontal approach of string theory for the hadronic world failed. Nevertheless, it
was realized that string theory was an ideal candidate for a theory of quantum gravity [1, 2].
The annoying massless spin two particle was shown to couple in precisely the same way as the
graviton does, which is the quantum for the gravitational force. So string theory went from
a theory of the strong interactions to a unified theory, as it naturally contained gravity and
other gauge forces. The closed strings describe gravity and the open strings the other gauge
interactions.

In a twist of irony, it is has now been understood that a certain string theory might describe
quantum chromodynamics, the correct theory of the strong interactions. The connection is
both subtle and deep. The strings no longer propagate in flat space as it was originally
envisioned. They propagate in a curved geometry and motion in the extra dimensions has the
gauge theory interpretation as renormalization group flow. This relation between string theory
as quantum theory of gravity and a non-gravitational gauge theory is dubbed as a holographic
correspondence [4, 3].

Currently, we do not yet have the correct string theory description of quantum
chromodynamics. But the string theory description of other interesting four-dimensional
gauge theories have been proposed. Remarkable progress has been made in encoding the
physics of gravity in terms of gauge theory.

2. Holographic correspondence

The holographic correspondence states that string theory—i.e. quantum gravity—with
specified boundary conditions can be alternatively described by a non-gravitational gauge
theory. This connection is very deep as it posits that quantum gravity can be described by a
set of degrees of freedom that are not gravitational. Understanding how to encode the degrees
of freedom of the gauge theory in the gravitational description may shed light on some of the
most profound puzzles of quantum gravity, such as the physics near the big bang and when
black holes evaporate.

This equivalence or duality in quantum gravity is called holographic because there is a
precise sense by which the gauge theory lives at the boundary of the spacetime where we
are studying quantum gravity. The physics in the bulk of spacetime—which we will refer as
bulk—is encoded in terms of a gauge theory that lives at the boundary.

In this talk, we will concentrate on the simplest case where we study quantum gravity
with asymptotically AdS5 boundary conditions [5–7], as this is the case where the holographic
correspondence in understood in most detail. AdS5 or five-dimensional Anti-de Sitter space
is the maximally symmetric space with a negative cosmological constant. It solves Einstein’s
equations
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Rij = − 4

L2
gij , (2.1)

where L is the radius of curvature of AdS5. Geometrically, AdS5 can be described by a
hyperboloid in R2,4 via

−X2
−1 − X2

0 + X2
1 + · · · + X2

4 = −L2. (2.2)

This representation makes manifest the SO(2, 4) isometry of AdS5. Physically, AdS5 behaves
like a cavity as light reaches the boundary in finite time and the physics of the bulk is therefore
sensitive to the boundary conditions imposed at the boundary, a fact that is crucial for the
holographic correspondence.

The holographic four-dimensional dual gauge theory lives at the boundary of AdS5.
In this correspondence the vacuum state in the bulk—global AdS5—is identified with the
vacuum state of the gauge theory. Since AdS5 has an SO(2, 4) isometry, this means that
the four-dimensional gauge theory is SO(2, 4) invariant, namely it is invariant under the
four-dimensional conformal group.

The correspondence now implies that for every excited state in the gauge theory there is
a corresponding state of string theory which is asymptotic to AdS5. Since a generic excitation
in the gauge theory breaks conformal invariance, the geometry in the bulk1 needs to be AdS5

only asymptotically. An early example of the identification between a gauge theory state and
a bulk geometry is the identification [8] of the thermal state of the gauge theory at temperature
T with a black hole in AdS5 with the Hawking temperature given by T, which is described by
the AdS–Schwarzwild metric.

The physical information in the gauge theory is captured by the correlation function
of gauge-invariant observables [5–7]. The simplest observables to consider first are the
correlators of local gauge-invariant operators. A given correlation function in the gauge
theory is computed from the bulk point of view by evaluating the bulk path integral with
a precise choice of boundary conditions which encode the information about the operators
involved in the correlator.

An important challenge in this program is to identify the asymptotically AdS5 geometries
that describe all the gauge-invariant operators in the gauge theory. Chief among these operators
are Wilson loop operators—characterized by curves in spacetime—which can be used to give
a manifestly gauge-invariant description of the gauge theory. One can also construct gauge
theory operators which are characterized by a surface in spacetime. Apart from their relevance
for holography, these operators may also serve as new-order parameters for new phases of
gauge theories.

3. Holographic Wilson loops

A necessary step in describing string theory in terms of a holographic dual gauge theory is to
be able to map all gauge-invariant operators of the field theory in string theory, as all physical
information is captured by gauge-invariant observables.

Gauge theories can be formulated in terms of a non-Abelian vector potential or
alternatively in terms of gauge-invariant Wilson loop variables. The formulation in terms
of non-Abelian connections makes locality manifest while it has the disadvantage that the
vector potential transforms inhomogeneously under gauge transformation and is therefore
not a physical observable. The formulation in terms of Wilson loop variables makes gauge-
invariance manifest at the expense of a lack of locality. The Wilson loop variables, being

1 Here we are glossing over the fact that, in general, the bulk description of a gauge theory state might not have a
semiclassical geometric description, but may only have a very stringy non-geometric description.
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non-local, appear to be the natural set of variables in which the bulk string theory formulation
should be written to make holography manifest. It is therefore interesting to consider the
string theory realization of Wilson loop operators2.

We find that a Wilson loop operator can have multiple, completely equivalent descriptions
in the bulk3 [11] (see also [12–14]). Which description is used depends on which of the
descriptions is most semiclassical, so it is computationally most tractable . We find that there
is a description which might be called the ‘probe’ description [11, 13] and then there is another
one described in terms of exact solutions of supergravity [12, 15–17] that are asymptotically
AdS5.

3.1. Wilson loops in AdS

A Wilson loop operator is labeled by a curve C in spacetime and by a representation R of the
gauge group G. The data that characterizes a Wilson loop, the curve C and the representation
R, label the properties of the external particle that is used to probe the theory. The curve C is
identified with the worldline of the particle propagating in spacetime while the representation
R corresponds to the charge carried by the particle.

Apart from the curve C, the other piece of data entering into the definition of a Wilson
loop operator is the choice of representation R of the gauge group G. For gauge group
U(N), the irreducible representations are conveniently summarized by a Young tableau
R = (n1, n2, . . . , nN), where ni is the number of boxes in the ith row of the tableau and
n1 � n2 � · · · � nN � 0. The corresponding Young diagram is given by

1 2 · · · · n1

1 2 · · · n2

1 2 · · · n3

· · · ·
1 2 · n

N

.

The main goal is to identify all half-BPS Wilson loop operators of N = 4 SYM in the dual
asymptotically AdS gravitational description.

The information about the curve C is encoded in the bulk by considering states in string
theory that end on the boundary of AdS5 along the curve C. If we consider an excitation of
string theory in AdS5 that ends on a curve C on the boundary that has the effect of introducing
the appropriate source to insert a Wilson loop operator defined on C, given by

WR(C) = TrRP exp

(
i
∫

C

ds(Aµẋµ + φI ẏ
I )

)
, (3.1)

where C labels the curve (xµ(s), yI (s)) and P denotes path ordering along the curve C.
For the problem at hand there are three basic excitations that can end on the AdS5 boundary

on a curve, they can be either a fundamental string, a D5-brane or a D3-brane. It was shown
early on that the fundamental string describes a Wilson loop in the fundamental representation
of the gauge group, where the Young tableau just has one box.

Physically, one expects that by stacking multiple strings together that one can obtain
Wilson loops in higher-dimensional representations of the gauge group. It turns out that this
intuition is indeed correct. More precisely, one can show that k coincident strings may be
described in terms of a single D5k-brane or a single D3k-brane. Physically what happens is

2 This has been done for Wilson loops in the fundamental representation by authors of [9, 10].
3 We will concentrate in the dictionary for the most symmetric case corresponding to maximally supersymmetric
gauge theory in four dimensions.
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P

M

Figure 1. A Young tableau. For U(N)P � N and M is arbitrary.

that the coincident fundamental strings blow up into a D-brane with dissolved electric flux,
which encodes the information about the fundamental string charge. In analogy with the
pointlike case, we denote the D5k-brane as the giant Wilson loop and the D3k-brane as the
dual giant Wilson loop.

For this particular problem we can explicitly show that a D5k-brane corresponds to a
Wilson loop in the kth antisymmetric representation while the D3k-brane corresponds to a
Wilson loop in the kth symmetric representation of the gauge group.

The strategy to show this is to integrate out the degrees of freedom introduced by adding
the D5k- or D3k-brane and see that their net effect is to insert the Wilson loop operator (3.1)
in the so-mentioned representation. Physically, adding a D5k-brane adds one-dimensional
fermions on the loop C while adding a D3k-brane adds one-dimensional bosons. The path
integral over the fermions/bosons can be explicitly performed and result with the insertion of
the desired Wilson loop.

One is able to show that a Wilson loop labeled by the Young tableau can be described in
terms of MD5-branes or alternatively in terms of PD3-branes in AdS5.

There is yet another bulk description for a half-BPS Wilson loop. One may try to take the
gravitational backreaction of the collection of MD5-branes or PD3-branes in AdS5. Since
D-brane source the gravitational field one must find solutions where the D-branes are replaced
by the gravitational backreaction they produce. The backgrounds that are produced are
asymptotically AdS5 and describe an excitation above AdS5 due to the Wilson loop operator
insertion. The boundary conditions that determine the bulk gravitational background can be
read from the Young tableau in figure 1.

In summary, we have given a complete bulk description of all half-BPS Wilson loop
operators. They can be explicitly shown to be described either by D-branes or asymptotically
AdS5 geometries4. We can therefore successfully identify important gauge-invariant operators
of the gauge theory on the boundary in terms of bulk entities.

The evidence is by now very compelling. Gauge theories in the boundary of spacetime
seem to capture the physics of quantum gravity in the bulk of spacetime. It remains to be seen
whether powerful enough techniques can be developed to construct and solve the string theory
description of quantum chromodynamics. When that happens, string theory will then finally
describe the theory of the strong interactions.

4 In the plenary talk, we also described how this identification of Wilson loops with D-branes and bubbling Calabi–
Yau manifolds can be also be shown [18, 19] in the topological string theory context and also for higher-dimensional
surface operators [20, 21].
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